Advancing HER2-Targeted ADC Drug Discovery through Resistant Cell Line **Generation and Cancer Cell Panel Analysis**

Lili Chai, Taotao Cao, Xue Yang, Wei Liu, Ying Meng and Tiejun Bing ICE Bioscience, INC. Building 14, Yard 18, Kechuang 13th Street, Beijing, China 100176 Email: bingtj@ice-biosci.com

Introduction

Antibody-drug conjugates (ADCs) represent a cutting-edge class of targeted cancer therapeutics, seamlessly integrating the high specificity of monoclonal antibodies with the cytotoxic power of chemotherapy agents. This strategic union facilitates the precise delivery of a potent cytotoxic payload to HER2-expressing cancer cells, where HER2 is a well-established therapeutic target. Despite the promising efficacy of HER2-directed ADCs in treating HER2-positive breast cancer, the emergence of resistance in tumor cells poses a significant obstacle to their therapeutic potential.

Figure 1. ICE database showed high expression level and Low expression level of HER2 in Cancer cell lines.

Figure 2. A, HER2 expression level in cancer cell lines detected by Flow. B, Binding assay in tumor cells with different HER2 expression levels. C, Comparison of Antibody and ADC binding EC50 in HER2+ SKOV3 cell. The result showed that NCI-N87, SKBR3, SKOV3 and HCC1954 cells have a high expression level of HER2 which makes them an ideal cell model for studies of breast cancer mono- and combination therapies.

Payload Cytotoxicity and ADC Cell Panel Testing

Payload cytotoxicity test

Figure 3. Panels of 40-70 cancer cell lines were used to assess the cytotoxicity of Dxd and Exatecan. The results demonstrated that both compounds exhibited potent cytotoxicity across multiple cancer types.

DS8201 efficacy in Cancer cell panel

Figure 4. DS8201 showed antiproliferative activity across various cancer types, including breast, gastric, and non-small cell lung cancers. While effective in many HER2-overexpressing cell lines (e.g., AU565, HCC1954), some HER2-high-expressing lines exhibited weaker responses (e.g., SK-OV-3). This highlights DS8201's therapeutic potential and the variability in efficacy based on cellular context and HER2 expression levels.

SK-OV-3

Tag-expression Reporter Tumor Cell Panel

In vitro bystander effect assay

Aa ⁺ cells	В					
Ag ⁻ cells	1	Detection methods	ADC bystander effect assays	#		
		Flow cytometry	Ag ⁺ /Ag ⁻ cell co-cultures with GFP/RFP	1		
SKBR3(Flow cytometry	Ag ⁺ /Ag ⁻ cell co-cultures without GFP/RFP	2		
		IncuCyte	Ag ⁺ /Ag ⁻ cell co-cultures with GFP/RFP	3		
MDA-MB-4	đ	IncuCyte (Realtime)	Ag ⁺ /Ag ⁻ cell co-cultures with GFP/RFP	4		
	U	IncuCyte and Microplate Reader	Co-cultures with Ag ⁺ -GFP/RFP cell and Ag ⁻ Luc cell	5		
SKBR3(0 MDA-MB-4 co-cult		Microplate Reader	Co-cultures with Ag ⁺ cell and Ag ⁻ Luc cell	6		
		Microplate Reader	Medium transfer	7		
•	GFP	IncuCyte (Realtime) IncuCyte and Microplate Reader Microplate Reader Microplate Reader	Ag ⁺ /Ag ⁻ cell co-cultures with GFP/RFP Co-cultures with Ag ⁺ -GFP/RFP cell and Ag ⁻ Luc cell Co-cultures with Ag ⁺ cell and Ag ⁻ Luc cell Medium transfer	4 5 6 7		

Figure 5. The table sums up the methods to test the bystander effect, like flow cytometry, IncuCyte, and CTG. Figure B shows the bystander effect of DS8201 in co-cultures of HER2-positive SKBR3-GFP and HER2-negative MDA-MB-468-RFP cells detected by flow cytometry. Figure C gives the dose-curve effect of DS8201's bystander effect. Results show DS8201 has a strong bystander effect.

Tag-expression cancer cell panel for bystander assays

Cancer cell type	GFP cells	High expression targets	Cancer cell type	Cell lines (ready)
Breast cancer	SKBR3-GFP	HER2, TROP2	Breast cancer	MDA-MB-231-Luc
Breast cancer	HCC1954-GEP	HER2 TROP2 MUC1 CDH3	Breast cancer	MDA-MB-468-Luc
Proact cancer			Breast cancer	MCF-7-Luc-mEGFP
		MUC1, D7-114, CD115	Breast cancer	H1299-Luc-mEGFP
Breast cancer	ZR-75-1-GEP	MUC1, LIV-1, B/-H4	Brain Carcinoma	LN299-Luc-mEGFP
Ovarian cancer	SKOV-3-GFP	HER2, TROP2, Nectin4, B7-H4	Brain Carcinoma	U251-Luc-mEGFP
Ovarian cancer	OVCAR-3-GFP	MSLN, B7-H4, MUC16, CLDN6	Brain Carcinoma	CT2A-Luc-mEGFP
Gastric Cancer	NCI-N87-GEP	HER2 TROP2	Colorectal Carcinoma	DLD-1-BRCA2-KO-Luc-mEGF
			Colorectal Carcinoma	HCT116-Luc-mEGFP
Gastric Cancer	NUGC-4-GFP	ULDN 18.2, HER3	Lung cancer	NCI-H1975-Luc-mEGFP
Pancreatic cancer	BXPC-3-EGFP	MET, CEACAM6, CEACAM5, CDCP1, EPHA2	Lung cancer	PC-9-Luc
			Lung cancer	A549-Luc-mEGFP
			Lung cancer	H1299-Luc-mEGFP
		Low expression terrets	Liver Carcinoma	HepG2-Luc
Cancer cell type	RFP cells	Low expression targets	Liver Carcinoma	HepG2-Luc-mEGFP
Breast cancer	MDA-MB-468-RFP	HER2, Nectin4, EGFR, B7-H4, NOTCH3	Hepatoma	HepG2-Luc
Broast cancor	MCE-7-REP	FOLR1 Nectin4 FGER ROR1 PTK7	Pancreatic cancer	MIA-PaCa-2-Luc
			Prostate Adenocarcinoma	PC-3-Luc
Lung cancer	NCI-H1/92-RFP	FOLR1, Nectin4, MUC1, ERBB3, CEACAM6	Prostate Adenocarcinoma	PANC-1-Luc-mEGFP
Lung cancer	NCI_H226-RFP	DLL3, TACSTD2, Nectin-4, CEACAM6, ITGB6	Prostate Adenocarcinoma	BXPC-3-Luc-mEGFP
Colon cancer	SW620-RFP	TACSTD2, CEACAM5	Prostate Adenocarcinoma	MIA PaCa-2-Luc-mEGFP
Paparaatia aanaar	MIA-DoCo-2-DED		Leukemia	Jurkat-Luc
Pancieatic cancer	IVIIA-FdGd-Z-KFF	GLUNTO.Z, TEGDU, 314	Leukemia	K562-Luc
			Lymphoma	Raji-Luc

erative impact of DS8201 highlights its relative selectivity for HER2 overexpressing cell lines											
Cancer Type	nTPM value for ERBB2 (Data from The Human Protein Atlas)	HER2 Receptor	Estrogen Receptor	Progesterone Receptor	R_IC50, nM	Max Inhibition%					
Breast adenocarcinoma	3987.3	+++	-	-	0.21	95.98					
Breast adenocarcinoma	801.3	+	-	-	21.16	98.80					
Breast carcinoma	403.1	+	-	-	>100	3.20					
Breast carcinoma	3827.8	+++	-	-	0.20	70.34					
Breast ductal carcinoma	3431.8	+++	-	-	0.32	55.70					
Breast ductal carcinoma	1854.2	++	-	-	0.22	42.62					
Breast ductal carcinoma	3990.1	+++	-	-	2.25	40.04					
Breast ductal carcinoma	2402.3	+++	-	-	1.87	73.39					
Breast ductal carcinoma	4058.3	+++	-	-	0.15	75.49					
Breast metaplastic carcinoma	2321.0	+++	-	-	0.05	75.12					
Gastric tubular adenocarcinoma	1288.3	++	-	-	0.45	53.86					
Non-small cell lung cancer	1050.2	++	-	-	0.22	30.23					
Non-small cell lung cancer	290.7	+	-	-	1.55	85.08					
Non-small cell lung cancer	3109.5	+++	-	-	0.69	89.16					
Ovarian adenocarcinoma	2047.9	+++	-	-	>100	15.50					

Figure 6. Three ADC-related resistant cell lines for three cancer types (Colon, Gastric, and Ovarian) were generated via procedure A. DS8201 and three other payload molecules were evaluated in the resistant cell proliferation assays (B). Results indicated that DS8201 showed limited efficacy in the DLD-1 and DLD-1 Exatecan R cell lines, as well as in the SKOV3 and SKOV3 Dxd R cell lines. Conversely, MMAE exhibited minimal resistance across all three resistant cell lines compared to Dxd and Exatecan, suggesting distinct resistance mechanisms for these compounds.

In this study, we detected HER2 expression levels in various tumor cells using ICE's internal database and flow cytometry. We also screened for cancer types and cell lines sensitive to ADC payloads to establish ADC drug models. Additionally, tagged negative and positive cells were constructed to study ADC bystander effects, and resistant cell lines were developed from sensitive ones to investigate resistance and provide models to overcome it. Overall, the ICE platform offers comprehensive evaluation for ADC drug efficacy.

Innovative CRO⁺Explorer Abstract Number: 1710

ADC Resistant Cell Line

Summary