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Antibody-drug conjugates (ADCs), combining the precision of antibodies with the potency of cytotoxic drugs, repre- ADC-Related Resistant Cell Lines Generation
Fixed Ratio Combination Study and Cl (Combination index) Calculation

sent a promising anticancer therapy. However, current ADCs face significant challenges, including non-responsive Resistance
: . : : , _ , Resistant Cell Lines Resistance Index (RI#) Cancer Type
cancers and rapid patient relapse, primarily due to tumor heterogeneity and drug resistance. To address these issues,
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used these hits to anchor a dual-payload combination screen. LS411N and T-84 cells were subsequently selected for two orthogonal syn-
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Figure 5. Matrix-combination synergy maps for dual-payload ATRi + TOPO1i pairs. Cells were exposed to 10 x 10 dose matrices (0.1-10 000 nM, 3-fold dilu-  ergy assays—fixed-ratio combination/Cl analysis and a 10 x 10 matrix synergy map—to obtain rigorous, quantitative interaction metrics.
tion) for 72 h; viability was assessed by CTG. The left column shows single-agent dose—response curves, while the remaining grids reveal pronounced syn-  Finally, we generated an ADC and payload-resistant cell panel to test whether dual-payload combinations can overcome either free-pay-

ergy for Ceralasertib with Dxd (HSA score > 13 across = 2 log concentration windows), confirming strong synergistic activity in T-84 cells. load or ADC-evoked resistance. ATR inhibitors—and, in some contexts, PARP inhibitors—consistently produced the strongest synergies

with TOPO1 inhibitors, providing a clear mechanistic rationale for co-loading these agents in novel dual payload ADCs.




